Логические операции и выражения

Логические операции и выражения

Логика
Логические операции и выражения
Таблица истинности
Логический элемент

В нашей жизни бывают случаи когда нет необходимости вникать в глубину того, или иного вопроса, — достаточно и его поверхностного понимания. Так и сейчас, изучая логические операции, часть вопросов мы рассмотрим поверхностно, а часть, которая связана с программированием микроконтроллеров, подробно.

Логические операции

Логика это не просто древнегреческое слово, а целая наука, изучение которой позволяет нам правильно и здраво рассуждать, и, соответственно, делать правильные выводы из наших рассуждений, чего, однако, очень не хватает в нашем современном мире (поэтому и говорят «нелогичный человек», «нелогичный поступок»).

Рассуждая о чем-либо, мы, на основе логических заключений, делаем соответствующие выводы. К примеру, думая о своем товарище, на основе каких-то фактах, характеризующих его, мы можем сделать вывод – друг он нам, или нет (или: «и не друг, и не враг, – а так»).

В конце 19 века, группа лиц, под названием «математики», решила перевести весь наш мыслительный процесс в более понятную для них форму – математическую. И из простой, человеческой логики, появилась математическая, или – символическая логика.  В чем суть этого метода. Любая высказанная нами мысль основывается на каких то фактах – кирпичиках, составляющих ее основу. Так вот, в математической логике эти «кирпичики» имеют только два состояния – «ложь» или «истина».

1+1 равно 2 – истинна, 1+1 не равно 2 – ложь. Все просто и понятно. А из таких «кирпичиков», а у математиков они называются – «простые выражения», которые могут быть только или «истинной», или «ложью», складываются «сложные выражения», которые тоже могут быть только или «истинными», или «ложными». А весь этот процесс получения сложного выражения из простых можно описать «логической формулой» или, как еще говорят, – «логическим выражением».

Все современные цифровые технологии основываются на логических операциях, без них никуда не деться. Все цифровые микросхемы в своей работе используют логические схемы (выполняют логические операции, в том числе и микроконтроллер).

Создавая программу, мы прописываем все действия микроконтроллера основываясь на своей логике с применением логических операций, иногда даже и не подозревая об этом, которые применяем к логическим выражениям.

Пример – «если в ходе выполнения программы получен такой результат, то дальше программа пойдет вот таким путем, а если мы получили другой результат, то программа дальше пойдет вот этим путем» – типичное выполнение логической операции.

В программировании логическая операция применяется не только к логическому выражению, но и для операций с двоичными числами, так называемые «логические побитовые (битовые) операции», которые очень сильно облегчают тяжелую жизнь программиста.


Основные логические операции

Существует три основных логических операции при помощи которых можно записать любое логическое выражение (не пугайтесь):

1. Инверсия
2. Конъюнкция
3. Дизъюнкция

Конъюнкция, оно же «Логическое И», оно же «Логическое умножение».
Мы выбираем название «Логическое И» – оно чаще встречается в программировании.
Допустим, у нас есть два простых выражения – А и В. Эти выражения могут иметь значения или 1 (истина), или 0 (ложь). При выполнении операции «Логическое И» мы получим сложное выражение которое примет значение 1 (истина) только в том случае если и А, и В имеют значение 1 (истина), во всех других случаях результат будет 0 (ложь).
Операция «Логическое И» имеет обозначения (в языках программирования): И, &&, AND, &.

Дизъюнкция, оно же «Логическое ИЛИ», оно же «Логическое сложение».
Мы выбираем название «Логическое ИЛИ». Кстати, если логически подумать, то можно и догадаться какие результаты будут при выполнении этой операции.
В «Логическом И» результат равен 1, если и А, и В, равны 1, а в «Логическом ИЛИ» результат будет равен 1, если или А, или В, равны единице.
Операция «Логическое ИЛИ» имеет обозначения: ИЛИ, ||, OR, |.

Инверсия, оно же «Логическое НЕ», оно же «Отрицание».
Мы выбираем название «Логическое НЕ».
Операция «Логическое НЕ» имеет обозначения: НЕ, !, NOT.
Тут вообще все просто:
Если А=1 (истина), то после выполнения операции «Отрицание» А примет значение 0, то есть становится ложным. И наоборот.
Есть еще одно название этой операции «Инвертор», а применяется оно в отношении цифровых микросхем.

В программировании часто применяется еще одна логическая операция – симбиоз «Логического И» и «Логического ИЛИ»:
Строгая дизъюнкция, оно же «Исключающее ИЛИ», оно же «Логическое сложение, исключающее ИЛИ», оно же «Сложение по модулю 2»
Мы выбираем название «Исключающее ИЛИ»
Операция «Исключающее ИЛИ» имеет обозначения: Искл.ИЛИ, XOR, ^.
В этом случае, при выполнении операции «Исключающее ИЛИ», результат будет истинен (равен 1), если А не равно В.  В остальных случаях результат будет равен 0 (ложный).


Таблица истинности

Все логические выражения, получающиеся из логических операций, можно свести в таблицы, которые называются таблицы истинности

Таблицы истинности


Логические элементы

Логические операции – основа цифровой техники. Даже цифровые микросхемы, которые предназначены только для выполнения логических операций, называют – «логические микросхемы», или еще проще – «логика».
Немного остановимся на микросхемах логики и мы.
Работа цифровых микросхем логики основана на выполнение трех основных логических операций, с которыми мы ознакомились выше. Сочетание этих логических операций позволило создать большое количество цифровых микросхем логики.
Основа таких микросхем – логический элемент.

Логический элемент выполняющий операцию «Логическое И»

Логический элемент выполняющий операцию «Логическое ИЛИ»

Логический элемент выполняющий операцию «Логическое НЕ»

Логический элемент выполняющий операцию «Исключающее ИЛИ»

Логический элемент выполняющий операцию «Логическое ИЛИ-НЕ»

Логический элемент выполняющий операцию «Логическое И-НЕ»

Кроме таких комбинаций логических операций существует еще ряд других.

Кстати, есть еще одна разновидность логики – женская логика. Весьма интересная штука. Но так как она к сегодняшней теме не относится, то придется, к сожалению, этот вопрос опустить.


Предыдущие статьи:
1. Микроконтроллеры — первый шаг
2. Системы счисления: десятичная, двоичная и шестнадцатиричная
Следующие статьи:
1. Битовые операции
2. Прямой, обратный и дополнительный коды двоичного числа


Примечание: к этой записи прикреплена форма для оценки. Чтобы оценить её, зайдите на сайт.
Логика, логические выражения, логические операции, таблица истинности, логические элементы
Published by: Мир микроконтроллеров
Date Published: 02/07/2015

4 ответа к “Логические операции и выражения”

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *