Измерение температуры с помощью терморезистора и Arduino

Использование терморезистора (термистора) – один из самых простых и дешевых способов измерения температуры. Для точного измерения температуры с помощью терморезистора необходим микроконтроллер, в качестве которого в нашем проекте мы будем использовать плату Arduino. Измеренное значение температуры будет отображаться на экране ЖК дисплея. Подобная схема может найти применение в удаленных метеорологических станциях, проектах автоматизации (умного) дома, управления электронным и промышленным оборудованием.

Внешний вид проекта для измерения температуры с помощью терморезистора и Arduino

Необходимые компоненты

  1. Плата Arduino (любая модель).
  2. NTC thermistor 10 кОм (терморезистор с отрицательным температурным коэффициентом).
  3. Резистор 10 кОм.
  4. Соединительные провода.

Работа схемы

Схема устройства представлена на следующем рисунке.

Схема проекта для измерения температуры с помощью терморезистора и ArduinoПри изменении температуры изменяется сопротивление терморезистора (термистора). Но в нашей схеме мы не будем измерять сопротивление термистора напрямую, вместо этого мы использовали делитель напряжения, одним из резисторов которого является известное сопротивление 10 кОм, а вторым – наш терморезистор. Средняя точка делителя напряжения подключена к аналоговому входу A0 платы Arduino, поэтому при помощи аналогово-цифрового преобразования (АЦП) на этом контакте мы можем определить падение напряжение на терморезисторе в любой момент времени и, следовательно, и его сопротивление. Благодаря этим данным мы по формулам, приведенным ниже в данной статье, можем определить значение температуры.

Терморезистор

Ключевым компонентом нашей схемы является терморезистор, который используется для определения температуры. Термистор представляет собой резистор, сопротивление которого изменяется в зависимости от температуры. Существует два типа подобных термисторов: NTC (Negative Temperature Co-efficient — с отрицательным температурным коэффициентом) и PTC (Positive Temperature Co-efficient — с положительным температурным коэффициентом). Мы в нашем проекте будем использовать терморезистор NTC типа – его сопротивление уменьшается с повышением температуры. На следующих рисунках приведены график зависимости сопротивления подобного терморезистора от температуры и его типовой внешний вид.

График зависимости сопротивления терморезистора NTC типа от температуры Внешний вид терморезистора

Расчет температуры с помощью терморезистора

Схема используемого нами делителя напряжения представлена на следующем рисунке.

Схема используемого нами делителя напряжения

Напряжение на терморезисторе в этой схеме можно определить из известного напряжения:

Vout=(Vin*Rt)/(R+Rt).

Из этой формулы можно выразить значение сопротивления терморезистора Rt (R – известное сопротивление 10 кОм):

Rt=R(Vin/Vout)-1.

Значение Vout мы затем будем определять в коде программы с помощью считывания значения на выходе АЦП на контакте A0 платы Arduino.

Математически, сопротивление терморезистора можно вычислить с помощью известного уравнения Стейнхарта-Харта (Stein-Hart equation).

T = 1/(A + B*ln(Rt) + C*ln(Rt)3).

В этой формуле A, B и C — константы, Rt – сопротивление терморезистора, ln — натуральный логарифм.

Мы для проекта использовали терморезистор со следующими константами: A = 1.009249522×10−3, B = 2.378405444×10−4, C = 2.019202697×10−7. Эти константы можно определить с помощью данного калькулятора, введя в нем значения сопротивления терморезистора при трех значениях температуры или вы их можете непосредственно узнать из даташита на ваш терморезистор.

Таким образом, для определения значения температуры нам будет нужно только значение сопротивления терморезистора – после его определения мы просто подставляем его значение в уравнение Стейнхарта-Харта и с его помощью рассчитываем значением температуры в кельвинах. Алгоритм определения температуры в нашем проекте представлен на следующем рисунке.

Алгоритм определения температуры в нашем проекте

Исходный код программы

Полный код программы представлен в конце статьи, здесь же сначала рассмотрим его наиболее важные фрагменты.

Для выполнения математических операций в программе мы должны подключить заголовочный файл библиотеки “#include <math.h>”, а для работы с ЖК дисплеем – подключить библиотеку “#include <LiquidCrystal.h>«. Далее в функции setup() мы должны инициализировать ЖК дисплей.

Значение температуры мы будем рассчитывать в программе с помощью рассмотренного выше уравнения Стейнхарта-Харта.

Также в программе мы считываем значение с аналогового входа платы Arduino.

Внешний вид работы нашего проекта показан на следующем рисунке – на ЖК дисплее выводятся значения температуры в кельвинах, градусах Цельсия и по шкале Фаренгейта.

Схему можно запитать по кабелю USB или использовать адаптер на 12 В.

Далее представлен полный текст программы.

Видео, демонстрирующее работу схемы

(Проголосуй первым!)
Загрузка...
21 просмотров


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *